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ABSTRACT The empirical mode decomposition (EMD) is an established method for the time–frequency
analysis of nonlinear and nonstationary signals. However, one major drawback of the EMD is the mode
mixing effect. Many modifications have been made to resolve the mode mixing effect. In particular,
disturbance-assisted EMDs, such as the noise-assisted EMD and the masking EMD, have been proposed
to resolve this problem. These disturbance-assisted approaches have led to a better performance of the
EMD in the analysis of real-world data sets, but they may also have two side effects: the mode splitting
and residual noise effects. To minimize or eliminate the mode mixing effect while avoiding the two side
effects of traditional disturbance-assisted EMDs, we propose an EMD-based algorithm assisted by sinusoidal
functions with a designed uniform phase distribution with a comprehensive theoretical explanation for the
substantial reduction of the mode splitting and the residual noise effects simultaneously. We examine the
performance of the new method and compare it to those of other disturbance-assisted EMDs using synthetic
signals. Finally numerical experiments with real-world examples are conducted to verify the performance
of the proposed method.

INDEX TERMS UPEMD, EMD, uniform phase, mode splitting, residual noise.

I. INTRODUCTION
The empirical mode decomposition (EMD) [1] is a nonlin-
ear, local [2] and adaptive method that decomposes a time
series into a series of oscillatory components at different time
scales, called intrinsic mode functions (IMFs). The IMFs
at different time scales are recursively extracted, from fine
to coarse, by applying a sifting process iteratively. In each
sifting step, the local maxima (minima) are connected using
cubic splines to form the upper (lower) envelope. The aver-
age of the upper and lower envelopes is then subtracted
from the signal to get a new prototype IMF. The IMF is
extracted after repeating the iterations several times. Except
for the last IMF at the lowest frequency that represents
the global trend of the input signal, each IMF has a well-
behaved oscillatory property that often allows reliable assess-
ment of instantaneous frequency and amplitude using Hilbert

transform (HT) [1]. In addition, there is no assumption about
the shape of each oscillatory component in the EMD. Thus,
it is believed that each IMF of a physical or physiological
signal derived from the EMD can better represent a specific
underlying control process. The EMD has been successfully
adopted in diverse fields such as biomedicine, geophysics,
speech analysis, image analysis, and feature extraction, and
has helped to reveal many physical and biological control
mechanisms (e.g. [3]).

Despite the approved advantages of the EMD in terms
of adaptivity, certain limitations can complicate the inter-
pretation of the EMD results. Specifically, for data contain
intermittency, the sifting process may detect extrema of the
data belonging to different components at different time
scales. As a result, the decomposed IMFs will consist of
intermittent oscillatory components spanning a wide range
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of disparate scales. This is known as the mode-mixing phe-
nomenon [1], [4], which not only causes serious aliasing in
the time-frequency distribution, but also obscures the physi-
cal meaning of individual IMFs.

A. RECENT WORK TO SOLVE MODE MIXING
To resolve these problems, there have been many pro-
posed techniques including the noise-assisted EMD [5]–[8],
the masking EMD [9]–[15], and the noise-assisted multivari-
ate EMD (N-AMEMD) [16] that have attracted a lot of atten-
tion in recent years because of their superior performances in
analyzing real world data.

Both the noise-assisted and masking EMD are based on
the similar concept: applying certain disturbances to the raw
data in order to obtain a perturbed signal with a more uniform
distribution of extrema and to overcome the mode mixing
problem. The noise-assisted EMD uses white noise as the dis-
turbance. The method, named the ensemble EMD (EEMD),
was first proposed by Wu and Huang [5]. This method first
generated sets of perturbed signals, which were obtained by
adding different realizations of white noise to the original
data. Then, the EMD analysis is subsequently applied to these
new data sets. Finally, the resultant IMFs are obtained by
averaging the respective IMFs over different realizations.

In most cases, the EEMD has a better performance than the
EMD in terms of mode-mixing and robustness. In parallel,
Deering and Kaiser introduced the masking EMD in which
sinusoids are used as the disturbance [9]. In each realization
of the masking EMD, it decomposes the data into two IMFs,
then the respective IMFs over the two (positive and negative
sinusoids) realizations are averaged and noted as the resul-
tant IMFs. The same procedure is recursively applied to the
resultant IMF to extract the lower frequency components [9].
This approach improves the filtering characteristics of the
EMD. However, one of the difficulties is that the frequency of
corresponding physical components is sometimes not known
beforehand.

Despite the great applications of the EEMD and the mask-
ing EMD to physiological/physical systems, they have notice-
able shortcomings including mode splitting and residual
noise effects that have been pointed out byWu and Huang [5]
for the EEMD and by Rilling and Flandrin [17] for the EMD.

B. MODE SPLITTING AND RESIDUAL NOISE
Mode splitting is the effect that the same oscillatory compo-
nent at the same frequency or in a narrow frequency band
resides in two or more neighboring IMFs, which would lead
to underestimation of the amplitude of the oscillation, prob-
ably in a nonstationary way. This effect can be sometimes
resolved by post-processing techniques such as recombina-
tion of the neighboring IMFs such that the resultant recon-
structed IMF corresponds to the relevant physical compo-
nent. The recombination procedure, however, is extremely
difficult or sometimes impossible for a nonstationary signal.
Mode splitting can be caused by two different factors (for
a detailed discussion, see Sec. IV). First, the EMD can be

interpreted locally as a filter (bank) [5], [6], [16], [18]–[20],
by which an oscillatory component will be split into two
different neighboring IMFs [5]–[6], [9], [17] when the fre-
quency of the oscillation is in between the bandwidth of two
filters. Second, the white noise is added to the signal in each
realization. The decomposition may lead to a mode transla-
tion phenomenon [6] because of the stochastic nature of the
white noise. In other words, the total number of IMFs and
the number of the IMF corresponding to the true oscillation
can be different for different realizations [7]. After taking the
average of the respective IMFs in individual realizations to
obtain the resultant IMFs, mode splitting may occur.

The second side effect is the residual noise. Historically,
there are two definitions of the residual noise. The first
definition is the reconstruction error or residual noise in the
reconstruction of an original signal (defined in [5] and [6]),
i.e., the input signal cannot be exactly reconstructed from the
sum of the decomposed IMFs. The second definition is the
residual noise (of the disturbance) in the individual IMF, and
is noted as the RMS noise in [6]. In the EEMD, the amplitude
of residual noise asymptotically approaches to zero as the
number of realizations approaches to infinity. As compared
to the EEMD, the residual noise effect is much more severe
in the masking EMD, probably causing distorted waveforms
or, even worse, incorrect IMFs (see more discussion below).

C. RECENT WORK TO SOLVE RESIDUAL NOISE
Recently a number of new noise-assisted EMD methods
have been proposed to resolve the problem related to
residual noise. Among them, the complementary EEMD
(CEEMD) [6] is similar to the EEMD except that each
assisted noise with plus and minus signs are applied in each
realization such that the input signal is exactly reconstructed
from the IMFs [1]. In the complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) [7], a par-
ticular noise is added at each stage of the decomposition
and a unique residue is computed to obtain each IMF. The
CEEMDAN reduces the mode-translation type mode split-
ting and the residual noise, and is complete. More recently,
the improved CEEMDAN (ICEEMDAN) [8] based on the
CEEMDAN is proposed to further reduce the residual noise
in CEEMDAN. Moreover, Rehman and Mandic proposed
the N-A MEMD [16] that is based on the multivariate EMD
(MEMD) [21]. In the N-AMEMD, the signal in located at the
first channel, and white noises are located at extra channels.
Then the composite signal is decomposed using MEMD. The
decomposed IMFs in the first channel are taken as the final
results. Since the assisted noise does not interact with the
signal directly, it is expected that the residual noise should
be low.

In this study, first we express an IMF as the sum of
attenuated copies of each tone plus the residual noise in the
IMF for a synthesized signal consisting of (semi-) pure tones.
Thus we can quantify and compare the mode splitting and
residual noise obtained by different EMD-based methods.
Understanding the origin of these effects will provide us the
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hint for developing an improved algorithm. We then intro-
duce the uniform phase EMD (UPEMD) method [22] —
a disturbance-assisted EMD. More importantly, we provide
a comprehensive theoretical explanation for the significant
reduction of these two effects in the UPEMD based on the
work of the Rilling and Flandrian [17]. Finally, we analyze
the computational complexity of the UPEMD.

The remainder of the paper is organized as follows.
In section II, we briefly review the EMD, EEMD and mask-
ing EMD. In section III, we investigate the mode splitting
and residual noise effects associated with the disturbance-
assisted EMD. In Section IV, we present the UPEMDmethod.
In Section V, we analyze the computational complexity of
the UPEMD. In Section VI, we present the experimental
results on the nonlinear and the real world data to illustrate the
efficacy of the proposed method and we conclude the paper
with Section VII.

II. THE EMD, EEMD AND MASKING EMD APPROACHES
A. THE EMD ALGORITHM
The EMD is a local and adaptive method that decomposes
a signal x (t) into a finite number of IMFs and a trend (or
residue). The EMD algorithm is briefly summarized below.

EMD Algorithm
1: Connect the local maxima/minima of x (t) to obtain the

upper/lower envelope using the cubic spline.
2: Derive the local mean of envelope, m(t), by averaging

the upper and lower envelopes.
3: Extract the temporary local oscillation h (t) =

x (t)− m(t).
4: If h (t) satisfies some predefined stoppage criteria [5],

h (t) is assigned as an IMF noted as cm(t) where m is
the IMF index. Otherwise set x (t) = h (t) and repeat
Step (1) – (3).

5: Compute the residue rm (t) = x (t)− cm(t)
6: Set x (t) = rm (t) and repeat steps (1) to (5) to extract

the next IMF.

The fixed sifting number (ns) as one of the stoppage cri-
teria is adopted in this study. Note that it is also possible to
use an ad hoc criterion to determine ns adaptively, which is
beyond the consideration of the current study. According to
Huang et al. [1], an IMF should satisfy two conditions. (1)
The local average is zero. (2) The number of extrema and
zero-crossings differs at most by one. Equivalently the local
maxima are all positive and local minima all negative [17].
Thus the Hilbert transform of an IMF often lead to mean-
ingful instantaneous frequency and amplitude. The instanta-
neous amplitude versus frequency and time is noted as the
Hilbert spectrum [1].

B. THE EEMD ALGORITHM
The EEMD algorithm first generates an ensemble of data sets
obtained by adding different realizations of the white noise
w(t) to the input data x (t). The EMD analysis is then applied

to these new data sets y (t). Denoting ne and m as the number
of realizations and the IMF index, respectively, the EEMD
algorithm is briefly summarized below.

EEMD Algorithm
1: In each realization k , calculate the perturbed signal yk (t)

by

yk (t) = x(t)+ ε0 · std(x (t)) · wk (t), (1)

where ε0 is the input noise amplitude, and std stands for
the standard deviation.

2: Apply EMD with ns iterations to decompose yk (t) into
multiple IMFs.

yk (t) =
∑
m

ck,m(t).

3: Repeat Step 1 and Step 2 using a different series of white
noise.

4: The resultant IMF cm (t) is calculated as

cm (t) = (1/ne)
ne∑
k=1

ck,m(t) (2)

The disturbance amplitude ε0 is usually empirically chosen
over the range of ε0 ≈ 0.1 ∼ 1.0. The residual noise δ usually
decays slowly as δ = (ε/

√
ne). In practice, ne is often applied

in the order of hundreds to achieve a compromise between
accuracy and computational time.

C. THE MASKING EMD ALGORITHM
The masking EMD uses a sinusoid signal w (t) as the assisted
disturbance with its frequency fw no less than that of the
highest frequency component of the data. Then the EMD
is applied to decompose the data x (t) perturbed by w (t)
into two IMFs. The same procedure is repeated by applying
the EMD to the data perturbed by −w (t). Finally the aver-
age of the two resultant sets of IMFs is taken as the final
result. Let Em(·) be the operator, which produces the mth
IMF decomposed by EMD [7]. The algorithm is summarized
below:

Masking EMD Algorithm
1: Generate disturbance wave:

w (t; θ) = ε · cos (2π fwt + θ) (3)

2: Compute c+1 (t) = E1(x (t)+ w(t; θ ));
3: Compute c−1 (t) = E1(x (t)+ w(t; θ + π ))
4: Obtain IMF1 by c1 = (c+1 + c−1 )/2, and IMF2 by

c2 = x − c1

In this method, the disturbance amplitude ε and phase
θ of the assisted sinusoid signal are predetermined and the
amplitude can be determined following the same rule used in
EEMD or masking EMD [9], [10].
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III. THE MODE SPLITTING AND RESIDUAL NOISE
In this section, we investigate and quantify the effects ofmode
splitting and residual noise on a synthesized signal of the
combined (semi-) pure tones in the EEMD and the masking
EMD.

We consider an input signal x (t) consisting of multiple
physical components. The signal is decomposed into a set of
IMFs (= nimf ) by the disturbance-assisted EMD, in which the
mode splitting effect manifests as the same physical compo-
nent leaked into its neighboring IMFs. The residual noise is
an artifact left in each individual IMF that is introduced by the
decomposition of the perturbed signal. As a result, each IMF
will consist of attenuated copies of the physical components
plus the residual noise.

Here we measured the mode splitting and residual noise
effects. Suppose x (t) consisting of nc tones that are defined
by pj (t), j = 1 : nc. Suppose each tone pj (t) is leaked into
all IMFs, which are stationary, then an IMF cm contains a
fragment of tone αjmpj (t) with αjm the attenuation ratio of
the jth tone onto IMF m. The attenuation ratio satisfies the
identity,

∑nimf
m=1 αjm = 1. Suppose an IMF cm is contaminated

by the residual noise δm, it yields

cm (t) =
∑ne

j=1
αj,mpj (t)+ δm (t) (4)

Equation (4) states that each IMF can be written as the
summation of the attenuated copy of each tone plus the resid-
ual noise δm(t). Larger ||δm(t)|| implies more severe residual
noise effect and vice versa. The mode splitting index (MSI j)
is defined as the percentage of the leakage of the amplitude
of tone j into other IMFs, that is

MSI j = 1−
maxm

(
αj,m

)∑nimf
m=1 αj,m

= 1− maxm(αj,m) (5)

TheMSI is bounded between 0 and 1. A largerMSI indicates
a stronger mode splitting effect and vice versa. If MSI = 0,
there is no mode splitting. The Fourier spectrum of the IMF
cm (t) is applied to calculate the attenuation ratio αjm of each
tone and the residual noise in (4) even when the decomposed
IMF is nonstationary. Then (5) is applied to calculate theMSI
for each tone.
Example 1 (Two-Tone Signal With Intermittency):
The data x (t) = xH (t)+xL (t) , 0 ≤ t ≤ 1000, is sampled

at 1Hz rate. The subscript H and L are noted as the high
and low frequency components, respectively, in this study.
The signal xH (t) is an intermittent sinusoid with amplitude
aH = 0.1 and frequency fH = 1/8, while xL (t) is a low
frequency sinusoid with amplitude aL = 1 and frequency
fL = 1/240. These signals are illustrated in the bottom
right panel of Fig. 1(a). We first illustrate the mode mixing
associatedwith EMD that is caused by intermittency, and how
this phenomenon can be resolved using different disturbance-
assisted EMD methods. The signal is decomposed by the
EMD into 2 IMFs. In the EMD algorithm, the sifting process
detects the extrema of xH (t) in some parts of the signal
and detects the extrema of xL(t) for the remaining parts of

FIGURE 1. The two-tone signal with intermittency in Example 1. (a) top
left: the IMFs by EMD; top right: the IMFs by EEMD/CEEMD; middle left:
the IMFs by ICEEMDAN; middle right: the IMFs by masking EMD. All the
results are conducted with ns = 10, and the EEMD, CEEMD, and
ICEEMDAN were conducted with ne = 200. (b) The relative residual noise
is represented in log10 base for the high-frequency components by
different EMD-based methods.

TABLE 1. The MSI for example 1.

the signal. Therefore the IMF1 obtained by EMD contains
intermittent mixed mode, which consists of an intermittent
high frequency wave riding on a low frequency wave. The
decomposition of the signal obtained by the EEMD,CEEMD,
ICEEMDAN, and masking EMD with ε = 0.2 and ns = 10,
are shown in Fig. 1(a). The frequency of the masking signal
is set as fw = fH . The ICEEMDAN tool is provided by
Colominas et al. [8]. For a fair comparison, the realization
number ne for CEEMD is taken to be ne/2 since the plus and
minus white noise is added in each realization.

As clearly shown in Fig. 1(a), the mode mixing is sub-
stantially reduced by the noise-assisted EMDs, but both of
the components xH and xL are split into many IMFs by the
EEMD, CEEMD, and ICEEMDAN. As can be observed in
the figure, the two IMFs obtained by masking EMD, indeed,
do not contain any recognizable mode mixing and mode
splitting effect. The mode splitting indexMSIH andMSIL by
different disturbance-assisted methods are listed in Table 1.

Next, we measured the residual noise δH . In the EEMD,
the IMF1 to IMF4 are recombined as the reconstructed
high-frequency component IMFH, and IMF5 to IMF6 as
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FIGURE 2. The decomposition of a one-tone signal in Example 2 by
different disturbance-assisted EMDs with ns = 10 and ε = 0.3. The EEMD,
CEEMD, and ICEEMDAN are conducted with ne = 50. (a) IMF 1 and 2 by
different disturbance-assisted EMDs. (b) The log2 base Fourier spectrum
of the IMF1. (c) The residual noise denotes as function of ne. The residual
noise of the masking EMD is almost zero and not shown.

the low-frequency components IMFL. The IMFH and IMFL
obtained by other noise-assistedmethods are also recombined
in a similar way. The relative residual noise is normalized
as δHrel = ‖δH‖ / ‖xH‖ · 100%. To reduce the boundary
effects, δHrel is calculated in the interval between 580 and
780. The δHrel as function of ne with different methods are
shown in Fig. 1(b). As expected, the residual noise for the
noise-assisted methods decay slowly as ne increases. In this
example, the ICEEMDAN slightly outperforms the other
noise-assisted methods, and the masking EMD outperforms
all the noise-assisted methods.
Example 2 (A Pure Tone):
The one-tone signal seems simple but provides a good

example to demonstrate the origin of mode splitting and
residual noise in the disturbance-assisted EMDs. The IMF
extracted by the EMD exactly represents the tone. How-
ever, if the tone is decomposed by the disturbance-assisted
EMD, the tone will be separated into different IMFs —
the mode splitting effect, and its waveform will be dis-
torted by the residual noise. Understanding the unde-
sired effects will provide us the hint for developing a
better algorithm. Consider a pure tone with frequency
f = 1/8Hz sampled at 1Hz. The signal is decomposed into
2 IMFs with ε = 0.3 and ns = 10 by different EMD-
based methods. The decomposed IMF 1 and 2 with ne = 50
are shown in Fig. 2(a), and the MSIs are listed in Table 2.
They indicate the presence of substantial mode splitting for
all of the noise-assisted EMDs. The Fourier spectrum of
IMF1 obtained by each disturbance-assisted EMD is shown

TABLE 2. The MSI for example 2.

in Fig. 2(b). It is seen that the spectrum of the IMF1 obtained
by the EEMD is broader than those by CEEMD and ICEEM-
DAN. However the frequency distributions of the spectral
power obtained by different noise-assisted EMDs are all con-
centrated around the frequency of the tone (1/8Hz). There-
fore, the residual noises do not differ significantly between
different noise-assisted EMDs which can also be confirmed
by Fig. 2(c). Note that the δ1 decays gradually as ne increases.
Next we investigate the IMFs obtained by the masking

EMD. The frequency of the masking is set to be fw = f .
The δ1 (not shown) andMSI in IMF1 presented in Table 2 are
negligible with this particular masking frequency. This partic-
ular case, however, does not imply that the masking EMD is
immune to residual noise. On the contrary, it sometimes gen-
erates deceptive frequency component as will be discussed
in Sec IV.B.

IV. THE UNIFORM PHASE EMD (UPEMD)
As mentioned above, both the EEMD and the masking EMD
can resolve the modemixing phenomenon, but mode splitting
and residual noise may occur consequently to deteriorate
the decomposition performance. The residual noise in the
EEMD results can be reduced by increasing the number of
realizations. In the masking EMD, depending on the fre-
quency and amplitude of the assisted sinusoid, the residual
noise is sometimes much more severe than that in the EEMD.
Particularly the deceptive frequency component generated
by the masking EMD may lead to a wrong interpretation
of the physics (will be discussed later). This effect must
be suppressed to achieve reliable results. More insights into
the EEMD and the masking EMD can be provided with the
following considerations:

(1) The disturbance wk (t) can be expressed in the Fourier
series as

wk (t) =
∑
i

aki cos (2π fit + θki)

Because the EEMD uses white noise as the assisted distur-
bance, the amplitude, the phase, and the frequency are all
randomly distributed. The EEMD searches for all possible
combinations of amplitude, phase and frequency of the per-
turbed signal in the sifting process such that the residual noise
can be asymptotically cancelled out. The masking EMD,
on the other hand, only searches for two phases of realizations
with both the amplitude and the frequency predetermined.
Therefore the EEMD suppresses residual noise better than the
masking EMD does.

(2) (i)The masking EMD uses a narrow-band sinusoid as
the disturbance while the EEMD (or noise-assisted EMD)
uses the white noise as the disturbance which is a broad-band
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signal containing many components over a wide range of
frequencies. Frequency components of the disturbance signal
and the input signal that have comparable frequency scales
may ‘‘interact’’ with each other to producemode splitting (see
Fig. 2).

Therefore, the broad-band white noise obviously has high
probability to interact with the input signal such that the
EEMD, on average, produces moremode splitting thanmask-
ing EMD.

(ii) EMD acts as an adaptive non-stationary filter bank.
In the EEMD, the perturbed signal is rather stochastic, which
may lead to somewhat random filter locations that a given
frequency would not always be in the IMF of the same index.
Even for an oscillatory signal at a fixed frequency, the IMF
corresponding to the signal may have different indices in
different realizations (mode translation). After obtaining the
average of the corresponding IMFs, a mode-splitting effect
occurs.

A. THE TWO-LEVEL UNIFORM PHASE EMD (UPEMD)
The masking EMD uses only two realizations of sinusoidal
signals, which is insufficient to eliminate the residual noise
effect. This observation suggests that a search for all the
possible phasesmay help tominimize the residual noise. Here
we present the two-level UPEMD to overcome the problems
encountered in the disturbance-assisted EMD. Denote the
number of phases as np with np ∈ N , np > 1. Let these np
phases be uniformly distributed over the 2π space. Then the
phase θk in the kth realization in (3) is calculated as

θk = 2π (k − 1) /np, k = 1 : np (6)

The two-level UPEMD is summarized in Algorithm 1.

Algorithm 1: Two-Level UPEMD (2L-UPEMD)
1: Assign Tw(= 1/fw), ε, and np.
2: Based on (6) and (3), calculated the perturbed signal

yk (t) by

yk (t) = x (t)+ ε · cos
(
2π
(
fwt +

k − 1
np

))
3: Perform the EMD to obtain the two IMFs,

ck,m (t) = Em(x (t)+ w(t; θk )), m = 1, 2
4: Repeat Steps 2 to 3 for k = 1 to np.
5: Obtain the resultant IMF1 and IMF2 as cm (t) = (1/np) ·∑

k
ck,m (t)

Notice that the masking EMD is a special case of the
2L-UPEMD with np = 2.

B. THE ONE-TONE PROBLEM
In this section, we will show that the mode splitting and
residual noise can be reduced by increasing the number of
phases in the 2L-UPEMD for the decomposition of a one-
tone signal, which serves as the basis for analyzing complex
signal, as will be discussed later. In each realization of the

2L-UPEMD, the perturbed signal y (t) is the combination of
the tone x (t) and the assisted sinusoid wk (t) as denoted by

yk (t) = awcos (2π fwt + ϕw)+ aLcos (2π fL t + ϕL) (7)

For convenience, we also define the frequency ratio
f , fL/fw ≤ 1 and the amplitude ratio a , aL/aw. Since
the frequency fw of the assisted sinusoid is no less than that
of the pure tone x (t), the assisted sinusoid w (t) is referred
as the high-frequency component and the pure tone x (t)
is referred as the low-frequency component in this section.
Note that this problem is equivalent to the decomposition
of a two-tone signal by the EMD with the frequency of
the assisted sinusoid being the high frequency signal. The
numerical simulation with phase number np = 1, 2, and
16 are conducted respectivelywith aw = 1, fw = 1/16Hz, and
NS = 10. TheMSI and δ1 for different f and a are displayed
in Fig. 3. The MSI for np = 16 is displayed in Fig. 3(a).
There are no significant differences in MSI between results
with different phase numbers. The residual noise in IMF1 is
presented in Fig. 3(b) and 3(c) for np = 2 and 16, respectively.
For convenience, the residual noise is normalized based on
the amplitude of the tone. As can be observed in these figures,
the residual noise for the algorithm employing 16 phases
is significantly lower than that of the algorithm employing
2 phases. The maximum residual noise is around 120% and
1% for the cases involving 2 and 16 phases, respectively.

Fig. 3 can be categorized into 3 regions based on the results
of the numerical simulations: (A) af < 1; (B) af 2 > 1;
(C) af ≥ 1&af 2 ≤ 1. Denote the extremum rate as the
average number of extrema per unit length. The extremum
rates in Regions A and B are constant and are equal to those
of the high and the low frequency components, respectively.
Region C is the transition region between Regions A and
B, and the extremum rate is between those of the high and
low frequency components. Furthermore, the extremum rate
in most of Region C is non-uniformly distributed, especially
near the boundary of Region B. Mode splitting occurs in
Regions A and C, and the residual noise occurs in all regions.

The analytic solution of the IMFs decomposed by the EMD
in Regions A and B can be obtained using an asymptotic
theory [17]. The theory is based on two assumptions. First
the spacing between the extrema in Regions A (af → 0)
and B (af 2 → ∞) is constant. In fact, the average number
of extrema per unit length (extremum rate) in Regions (A)
and (B) is roughly constant despite the slightly non-uniform
distribution of their extrema. Second the higher order aliasing
error can be neglected. Here we analyze the decomposition in
each region.

(1) Region A: af < 1.
The analytical solution for the decomposition of x (t) +

wk (t) by EMD can be approximated by

ck,1 (t) = cos (2π fwt + θk)

+ (1− I (f ))nsa cos (2π fL t + φL) (8)
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FIGURE 3. The mode splitting index (MSI1) and the residual noise δ1 obtained by the UPEMD for a one-tone signal. (a) MSI1 with np = 16; (b) δ1 with
np = 2; (c) δ1 with np = 16.

FIGURE 4. The transfer function T (f̃ ) = 1− I(f̃ ) in (10) after one and
10 sifting.

The term 1−I (f ) is the frequency response, and I (f ) is given
by

I (f ) =
(
sin (π f )
π f

)4 ( 3
2+ cos (2π f )

)
(9)

The resultant IMF1 of the 2L-UPEMD is obtained by aver-
aging IMF1 ck,1 over all realizations. The first term in (8) is
cancelled out and IMF1 becomes

c1 (t) = (1− I (f ))nsa cos (2π ft + φL) (10)

The second IMF c2 is obtained by subtracting c1 from the
input signal. In (10), T (f ) = (1− I (f ))ns is the EMD
equivalent filter and is an increasing function of f in [0, 1]
as shown in Fig. 4. The mode splitting index for the tone is
calculated as

MSI = min {T (f ) , 1− T (f )} (11)

Equation (10) and (11) imply that MSI is unrelated to
np and there is no significant residual noise in this region.
Equation (10) states that the severity of mode splitting is a
function of sifting number ns, and that the frequency ratio f is
independent of the amplitude ratio. We obtain T (1) =1 when
f = 1, in which the data is completely assigned to the
IMF1 such that MSI = 0. This explains why the MSI1 is
almost zero when the masking frequency is equal to that of
the (high) frequency component in Examples 1 and 2. On the
other hand, if f → 0, then T (0) =0, i.e., the data is totally
extracted into the IMF2, and MSI = 0. If T (f ) is greater
than 1/2, then IMF1 contains more energy of the tone than
IMF2 does, and vice versa.

FIGURE 5. Decomposition of a one-tone signal using UPEMD with np = 2
and 16. The composite signal is located in Region A with fw = 1/16Hz,
f = 0.4Hz, and a = 2. Top panel: IMF2. Middle panel: residual noise. The
bottom left and right panels show the Fourier spectra of the residual
noises with np = 2 and 16, respectively.

We further examine the waveform of IMF1 and its cor-
responding Fourier spectrum with parameters f = 0.4Hz,
ϕL = −π/2 and a = 2. The results are presented in Fig. 5.
TheMSI is 0.63% and 0.64% for np = 2 and 16, respectively.
In these cases, no analytical expression of the residual noise
can be found. Thus, the numerical simulation is conducted
to calculate the residual noise. The L2 norm of the residual
noises of IMF1 is 0.01% and 0.0014% for np = 2 and 16,
respectively. These results show that the residual noise is
significantly reduced using 16 phases. Noted that the mode
splitting effect is a natural consequence of the EMD, but the
effect is small for a two-tone signal with widely disparate
scales.

(2) Region B: af 2 > 1.
In this region, the analytic solution for the two-tone signal

decomposed by EMD is given by

ck,1 (t) = wk (t)+ x (t)

− awλn cos
(
2π fr t + 2kf (φL)+ ϕw

)
(12)

In (12), λn = 1 − T (fr/f ) and 2k f − 1 < (1/f ) < 2k f + 1,
kf ∈ N . The IMF ck,1 consists of the perturbed signal x (t)
and the residual noise of frequency fr = 2k f f − 1. The
amplitude λn and fr are plotted in Fig. 6. As can been seen
from this figure, λn lies in (0, 1) and fr < f . The resultant
IMF1 of the 2L-UPEMD is obtained by averaging the IMF1
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FIGURE 6. (a) λn versus fr in (12). (b) The residual noise δ1(t) using
UPEMD with np = 2 and 16. (The composite signal is located in Region B
with fw = 1/16Hz, f = 16/44Hz, and a = 10.) (c) The corresponding
Fourier spectrums of (b).

ck,1 of all realizations:

c1 (t) = x (t)

− (1/np)
∑
k

{awλn cos
(
2π fr t + 2kf (φL)+ ϕw,k

)
}

(13)

Equation (13) indicates that the resultant IMF1 is the sum of
the tone and the residual noise δm (t) at frequency fr . Note
that there is no mode splitting in this region. The magnitude
of the residual noise is proportional to the amplitude of the
assisted sinusoid aw. Based on the linear model, the residual
noise is cancelled out if np ≥ 2. This implies that the
residual noise is low and its actual value can be obtained
by numerical simulation. We further examined the waveform
and its corresponding Fourier spectrums for the IMF1 with
parameters f = 16/44Hz, ϕL = 0 and a = 10. The residual
noise for np = 2 and 16 are shown in Fig. 6(b) and 6(c).
The maximum residual noise of IMF1 are 1.6%, 1.1 · 10−2%,
8.7 · 10−3%, and 4.9 ·10−3% for np = 2, 4, 8 and 16,
respectively. These results demonstrate the superiority of the
2L-UPEMD in suppressing the residual noise. We notice that
the frequency of the residual noise, fr , is smaller than that
of the data. When dealing with multi-component data, the
residual noise acts as an error source and propagates into the
subsequent IMFs. That is, the residual noise appears in the
IMF at a scale (frequency) similar to that of the low frequency
of the residual noise. Therefore, if a small np is adopted in the
decomposition, the artifact component may be misinterpreted
as a physically meaningful phenomenon.

(3) Region C: af ≥ 1&af 2 ≤ 1.
Because the extremum rate is non-uniformly distributed in

most of this region, the EMD interprets the perturbed signal
as the one with intermittency. Because there is no analytic
solution in this region, the numerical simulation is conducted
to calculate the mode splitting index and the residual noise.
Here we investigate the tone with parameters f = 16/27Hz,
ϕL = 0, and a = 2. The perturbed signal and its

FIGURE 7. Analysis of the one-tone signal in Region C using UPEMD with
different nps. The composite signal is located in Region C with
fw = 1/16Hz, f = 16/27Hz and a = 2. (a) The perturbed signal yk (t) with
the subscript k as the realization index. (b) The IMF1 and IMF2 for k = 1
and 2 obtained by EMD. Mode mixing is obviously seen in the IMF1 and
IMF2. (c) Top and middle panel: the IMF1 and the residual noise δ1
profiles with np = 2 and 16, respectively; bottom panels: the
corresponding Fourier transform of δ1. The wide distributed spectrum
using UPEMD with np =2 indicating that the IMF1 is a physically incorrect
component.

corresponding IMFs for the first few realizations are dis-
played in Fig. 7. The zone of the perturbed signal with high
extremum rate, Zh, is marked by the solid circles in the fig-
ure. Although the perturbed signal is periodic, the extremum
rate is highly non-uniform in Region C. The decomposed
IMF1 thus contains a mixing of small and large scales. As can
be observed in the figure, the locations of the decomposed
waves at small scales are close to zone Zh and spread out
slowly as the number of sifting increases. In the second real-
ization, the zone Zh is shifted to the left. The similar behav-
ior remains in the subsequent realizations. After performing
the average procedure in the 2L-UPEMD, the mode mixing
and the residual noise phenomenon almost disappear. The
decomposition results using 2 and 16 phases are presented
in Fig. 7(d). The maximum residual noise δ1 (t) are 35% and
0.2% for np = 2 and 16, respectively. As expected, the case
using 16 phases significantly reduces the residual noise.MSI
is 19% in both cases, indicating that the mode splitting effect
is insensitive to the phase number.

Although the one-tone signal appears to be over simplified,
the results can serve as the theoretical basis for the analysis
of the complex signals for the following reasons. Based on
the recursive nature of the EMD, it is sufficient to consider
the case that a signal can be decomposed into two IMFs.
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Since the EMD is an algorithm with a high locality [2],
we can focus on a short period of the signal, and classify each
interval into any of the three regions (The extrema must be
either uniformly distributed or non-uniformly distribution).
This implies that the above approach can be readily extended
to the analysis of signals with non-uniformly distributed
extrema. Since the residual noise is substantially suppressed
by increasing the number of phases in the 2L-UPEMD, it can
be readily used to analyze the real world data containing
multiple physical components.

C. THE MULTI-LEVEL UNIFORM PHASE EMD (UPEMD)
In this section, the 2L-UPEMD is extended to its multi-level
version to deal with multicomponent data. The 2L-UPEMD
is applied to decompose the data into two IMFs. The IMF1 is
taken as the resultant IMF1, and IMF2 is treated as the new
data. The same procedure is recursively applied to extract the
resultant IMFs at lower frequencies.

The masking frequency fw is predetermined by taking the
dyadic property of EMD [5] that acts as an adaptive dyadic
filter bank for the decomposition of the white noise with
ns = 10 [5], [18]. The number of resultant IMFs is approx-
imately equal to nimf = log2 n. The period with index m is
determined as Tw = 2m, m = 1: log2 n. For convenience, let
Um(·) be the operator which produces the mth IMF decom-
posed by 2L-UPEMD. The multi-level UPEMD algorithm
is presented in Algorithm 2. The tool can be accessed at
http://in.ncu.edu.tw/mzlo/drLo.html.

Algorithm 2: Multi-Level UPEMD
1: Assign np, set nimf = log2 (n) and initial residue:

r0 (t) = x(t)
2: Set εm = ε0 · std(rm−1 (t)), and (Tw)m = 2m

3: Perform the two-level UPEMD to obtain the IMF cm (t),
i.e. cm (t) = U1(rm−1; np, εm, (Tw)m, ns)

4: Calculate residue rm (t)← rm−1 (t)− cm(t)
5: Repeat Steps 2 to 5 for m= 1 tonimf to extract all IMFs.

It is obvious that the input signal is exactly reconstructed
from the IMFs.

FIGURE 8. The decomposition of the signal in Example 1 using two-level
and multi-level UPEMD with ns = 10. (a) The IMFs by two-level UPEMD.
(b) The IMFs by multi-level UPEMD with np = 8. (c) The relative residual
noise in log10 base.

FIGURE 9. The decomposition of the signal in Example 2 using multi-level
UPEMD. (a) IMF 1 and 2 (b) The log2 base Fourier spectrum of the IMF1.
(c) The residual noise as function of np.

We tested the UPEMD using the signal in Example 1. The
same parameters ε = 0.2 and ns = 10 as in the noise-assisted
methods were chosen for a fair comparison. The IMFs and
the residual noises decomposed by two-level and multi-level
UPEMD are displayed in Fig. 8. In the two-level UPEMD,
the masking frequency fw is assigned to be fH . In the multi-
level UPEMD, the IMFH and IMFL are reconstructed from
the IMFs in the same manner as other noise-assisted EMDs.
The mode splitting indicesMSIH andMSIL are both insensi-
tive to np. The values are 0.00 and 0.00, respectively, for the
two-level UPEMD, and are 0.01 and 0 respectively, for the
multi-level UPEMD. The UPEMD provides the least mode
splitting effects compared to other noise-assisted methods as
listed in TABLE 1. Moreover the performance of the two-
level UPEMD is superior to that of the multi-level version as
will be explained soon. The residual noise δHrel for multi-
level UPEMD are about 0.01%, which is at least an order
of magnitude smaller than other noise-assisted methods even
with ne as large as 3200.

Second, we tested the multi-level UPEMD using the signal
in Example 2. The same parameters ε = 0.3 and ns = 10
were chosen for a fair comparison. The IMFs, spectrum, and
the residual noise with np = 8 are presented in Fig. 9. The
mode splitting index MSI = 0.6% and residual noise δ1, are
basically independent of np. They are smaller than all of the
noise-assisted EMDs even with ne = 800. Notice that the
spectrum of the IMF1 in Fig. 9(b) shows a small third order
harmonics residual error due to insufficient sample rate.

We made a remark on the UPEMD. In contrast to the
EEMD, where noise with a fixed global amplitude is applied,
the masking amplitude εm in step 2 can be determined adap-
tively for each level m. The selection of εm provides an
extra level of adaptivity for the multi-level UPEMD which
is similar to the (I)CEEMDAN methods [7], [8]. Moreover
the masking frequency (f w)m in step 3 is set a priori on a
dyadic grid (i.e., increasing dyadically with m) that can also
be determined adaptively for each level m.

Based on the recursive and local nature of EMD, Fig. 3 pro-
vides insights in determining value of εm and fw to further
reduce the value of the MSI and δ.
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FIGURE 10. Analysis of the two-tone problem in Example 3. The mode
splitting index MSI1 and MSI2 of a two-tone signal obtained by EEMD
and UPEMD using different number of phases np. The black line
represents T2 = 2T1, and the white dash line represents T2 = T1.

(a) To avoid the mode mixing, a sufficiently large εm (i.e.
small a) can be applied such that (a, 1/f ) is located in Region
(A) with low MSI . If the decomposition of the residue rm−1
produces no mode mixing effect, small or zero εm can be
set such that (a, 1/f ) is located in Region (C) to minimize
the mode splitting and residual noise side effects. For an
illustration, the one-tone signal discussed earlier is decom-
posed using two-level UPEMD with np = 2 and parameters
f = 16/44Hz, ϕL = 0 and a = 10. The EMD interprets
the perturbed signal as the one with mode mixing because
the extrema of the masking signal are not all ‘‘visible’’ in
the perturbed signal (Fig. 7(d)). When aw is large enough
to guarantee that all its extrema are seen that corresponds
to af < 1, the value of af will move horizontally from
region (C) to (A) in Fig. 3(b). Thus the residual noise will
be removed.

(b)The masking frequency fw can be determined based on
the Hilbert spectrum [9] or Fourier spectrum [10], [20] of the
residue rm−1. Here we propose a different approach. The opti-
mized fw can be determined based on Fig. 3. For instance, the
MSIH is about 1% for the signal in Example 1 decomposed by
UPEMD with f = f w/fH = 2. If we set fw = f +H (i.e. slightly
higher than the highest component in the signal), the MSIH
is reduced to almost zero.
Example 3 (Two-Tone Problem):
In this example, we examine the mode splitting effect

when EEMD and the multi-level UPEMD are used to
analyze a signal with two tones. The amplitudes of both
tones in the signal are chosen to be both one, and their
periods are noted as T1 and T2, respectively. The param-
eters adopted in the decompositions are ns = 10,
and ε = 0.2. The mode splitting indices for the two com-
ponents, MSI1 and MSI2, are displayed in Fig. 10. These
graphs can be roughly divided into two regions. In Region
I, where T2 ≥ 2T1, the two tones are well separated [9].
In Region II where T2 < 2T1, the two tones are strongly
amplitude-modulated. For both methods the MSI1 distribu-
tion in Region I mainly depends on the frequency (period) of

TABLE 3. The average mode splitting index MSI for UPEMD and EEMD.

FIGURE 11. Dyadic filter bank structure of white noise in Example 4. Each
figure plots the PSD versus normalized frequency.

tone 1 only. The MSI2 for the EEMD in Region I depends
on the frequencies of both tones. On the contrary, the MSI2
for the UPEMD in Region I mainly depends on the period of
tone 2. As the amplitude of disturbance increases, the MSI2
in Region I would be more independent of T1. The maximum
MSI2 is not much different between the two methods (i.e.,
0.53 and 0.52 for the EEMD and the UPEMD, respectively).
The mean value of MSI2, as shown in TABLE 3, is signifi-
cantly smaller in the UPEMD. In addition, the mean values
of MSI1 and MSI2 are insensitive to the number of phases
although the MSI distribution for the case using 16 phases is
more regular than that using 2 phases (not shown).
Example 4 (Dyadic Filter Bank Structure):
In this examplewe investigate whether the filter bank struc-

ture [18] is preserved in UPEMD as in EMD. The Gaussian
noise is decomposed byUPEMDusing 4096 realizations with
np = 16, length n = 512 and ns = 10. In each realization,
the Hamming window with no overlap is applied to calculate
the power spectrum density (PSD). Then, the average over
different realizations is taken as the final result. The PSD
in dB versus normalized frequency in log2 base is shown
in Fig. 11 with ε = 0, 0.1, 0.2, 0.4 respectively. Notice that
UPEMDwith ε = 0 is equivalent to the standard EMD. These
figures show that the dyadic filter bank structure is preserved
in UPEMD as occurred for the EMD/EEMD. The Fourier
spectra of the decomposed IMFs (except for IMF1) from
the standard EMD almost collapsed into a single curve [18]
on the log-log plots except for the region around the very
high frequency. It is worth mentioning that as ε increases,
the UPEMD-derived IMFs show faster roll-off and narrowing
bandwidth.

V. COMPUTATIONAL COMPLEXITY OF UPEMD
The computational complexity of the EMD [23] with data
length n is given as TEMD (n) = 41ns · n log2 n where the
logarithm term is exactly the number of IMFs in the EMD
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FIGURE 12. The decomposition of the signal x(t) derived from the Duffing Equation in Example 5 using different EMD-based methods with
ε = 0.05 and ns = 1000. (a) The IMFs by UPEMD with np = 2 and 32. (b) The IMFs by EEMD/CEEMD with ne = 200. (c) The IMFs by ICEEMDAN
with ne = 200. The black curves in (a) to (c) denote the IMFs obtained by EMD that serve as exact solutions.

TABLE 4. Computational complexity different versions of EMD.

decomposition, and the term Tsift (n) = 41ns · n is the
complexity of the sifting process. In the np-phase UPEMD,
the number of extracted IMFs is log2 n, and the computa-
tional complexity in each IMF m is approximately equal
to np · T sift (n) and is listed in TABLE 4. In other words,
the computational complexity of the np-phase UPEMD is
np times that of the EMD. Based on our simulations in this
study, np = 4 to 32 is sufficient to suppress most of the
residual noise. The computational complexity of the np-phase
UPEMD is much lower than that of the EEMD as can be
observed in TABLE 4.

VI. NUMERICAL EXPERIMENTS FOR THE NONLINEAR
AND REAL WORLD DATA
In this section we illustrate the performance of the UPEMD in
analyzing nonlinear and real world signals. The MSI is esti-
mated as follows. When the exact solutions of the physically
components pi (t) are known. We need to modify (5) since it
only holds for pure tones. Denoting IMF j as ⇀c j, the modified
mode splitting index (MMSI ) is defined as

MMSI i = 1−max
j

⇀c j·
⇀pi∥∥∥⇀pi∥∥∥2
2

, 0 ≤ MMSI i ≤ 1.

For real world nonstationary data, pi (t) is often unknown.
The pseudo-MSI (PMSI ) that is similar to the orthogonal
index [1] is applied to estimate the mode splitting index
between two adjacent IMFs as given by

PMSI i,i+1 = max

 ⇀c i ·
⇀c i+1∥∥∥⇀c i∥∥∥2

2
+

∥∥∥⇀c i+1∥∥∥2
2
+ 10−8

, 0


As discussed in Sec. III. Larger MMSI and PMSI indicate
more severe mode splitting.

TABLE 5. The MMSI in example 5.

Example 5 (Duffing Oscillator):
The nonlinear and nonstationary oscillator can be

described by the Duffing equation:

ẍ (t) = x − x3 + 0.1 cos
(
2π t

/
25
)

The oscillator with initial conditions x (0) = ẋ (0) = 1
has been previously studied using the EMD [1]. Here, we use
this oscillator to examine the performances of different EMD-
based methods with a special focus on mode splitting and
residual noise, introduced by the two methods. The 4th order
Runge-Kutta method is used to obtain the displacement x(t)
of Duffing oscillator. The top panel in Fig. 12(a) shows
that the signal is nonstationary and the pattern of displace-
ment never repeats. The EMD decomposes x (t) into three
physical modes, i.e., Modes A-C. Mode A corresponds to
the intrinsic frequency of the system, which shows a strong
intrawave frequency modulation. Mode B corresponds to a
uniform intermediate frequency component representing the
forcing function. Mode C represents a very low-intensity sub-
harmonics. Because the amplitude ofMode C ismuch smaller
than other modes, a slight mode splitting or residual noise
effect would deteriorate its waveform and may obscure its
physical meaning. The three IMFs show nomodemixing, and
the frequencies of these 3 modes are well separated without
mode splitting effects. Therefore the IMFs obtained by EMD
will serve as the exact modes.

Here we present the decomposition results using different
disturbance-assisted EMDs. We investigate the limitations
and robustness of these algorithms by increasing disturbance
amplitude slightly in each run until they fail in extracting
the physical components of the data. First, we consider
ε = 0.05. For the UPEMD with np = 32, IMF 1 to 4 and
IMF 6 represent spurious residual noise modes that are
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FIGURE 13. Analysis of blood flow velocity x(t) in Example 6 using
different disturbance-assisted EMDs with ε = 0.4 and ns = 10. (a) Top
panel: the signal x(t); middle panel: the extracted RO mode by UPEMD
with np = 2 and 32; bottom panel: the extracted RO mode by EEMD,
CEEMD, and ICEEMDAN with ne = 200. The points with positive local
minima or negative local maxima are marked in the circles. The RO mode
appears in IMF 6 for EEMD/CEEMD, and appears in IMF 7 for ICEEMDAN
and UPEMD. (b) The PMSI values.

not associated with any physical component. The maximum
amplitude of the residual noise of the combination of IMF
1 to 4 (neglecting the boundary effect) is about 5 · 10−4

and that of component 6 is about 6 · 10−4. The IMF 5, 7,
and 8 match well with Mode A, Mode B, and Mode C,
respectively. The MMSIs for different methods are shown in
TABLE 5. It shows that the mode splitting effect is very weak
in the UPEMD. The UPEMDwith 2 phases is also performed
and the result does not provide an IMF that canmatchMode C
well. For the EEMD/CEEMDwith ne = 200, the components
1 to 4 are not associated with any physical components but
are just due to residual noise. The sum of these 4 IMFs
shows that the maximum amplitude of the residual noise is
about 0.01/0.0012, which is larger than that of the UPEMD.
In addition, Mode A is split into IMFs 5 and 6. Mode B
mainly occurs in IMF6. Mode C mainly occurs on IMF7. For
the ICEEMDAN, IMF 1 and 2 are spurious residual noise
modes. The sum of these 4 IMFs shows that the maximum
amplitude of the residual noise is about 0.001. Mode A is
split into IMF 3 and 4. Mode B is split into IMF 5 and 6.
As observed from Fig. 12(b) and (c), the EEMD, EEMD,
and ICEEMDAN underestimate the amplitude of Mode B
because of mode splitting. In addition, the EEMD/CEEMD
results cannotmatch both the amplitude and phase ofModeC.
TABLE 5 lists the MMSIs of different methods. As can be
seen, the UPEMD significantly reduces the mode splitting as
compared to the noise-assisted methods.

For the condition with ε = 0.1, the UPEMD with
np = 32 provides the close solutions for Modes A and B,
but not Mode C. In contrast, the noise-assisted derived IMFs
do not match any of the expected physical modes.
Example 6 (Analysis of Blood Flow Velocity):
A brain blood flow velocity (BFV) signal [24] used

to assess dynamic cerebral autoregulation (CA) is shown
in Fig. 13 (a). The data is 40-sec long and sampled at
50Hz rate. As discussed previously [3], the spontaneous BFV
oscillation is entrained by respiration over the frequency
range of 0.18 ∼ 0.3 Hz. The signals decomposed by dif-
ferent disturbance-assisted EMDs are shown in Fig. 13 (a).

The respiratory oscillationmode (ROmode) appears in IMF 6
for EEMD/CEEMD, while appears in IMF 7 for ICEEM-
DAN and UPEMD. The PMSI values displayed in Fig. 13(b)
are adopted to measure the mode splitting effect between
different methods. It shows that the UPEMD method sup-
presses the mode splitting phenomenon better than the other
methods do. In addition, the PMSI values for UPEMD with
2 and 32 phases are quite close indicating that mode splitting
is insensitive to the number of phases in UPEMD.

In the disturbance-assisted EMDs, the resultant IMFs are
obtained by averaging the respective IMFs over different
realizations. Thus the IMFmay violate the IMF conditions [5]
that provides as an index to examine the performance of
different EMD-basedmethods. Here we investigate the wave-
forms of the RO mode by different methods. The RO modes
for the ICEEMDAN and UPEMD with np = 32 both satisfy
the IMF conditions. The waveform is distorted for UPEMD
with np = 2 around t = 22 sec (with a negative maximum)
and 36 sec (with a positive minimum), and are distorted for
EEMD and CEEMD around t = 11 sec (with a negative
maximum).
Example 7 (Analysis of Speech Signal):
A speech signal of a man pronouncing ‘‘A ship was torn

apart’’ sampled at 16 kHz is shown in Fig. 14(a). The
period t = 0.75 to 0.79 sec corresponding to the consonant
’’s’’ is enlarged and shown in the top panel of Fig. 14(c).
Strong mode mixing occurs in the IMFs obtained from
the standard EMD. As discussed previously, in the EEMD,
the data cannot be exactly reconstructed from the IMFs, thus
hissing-like audible residual noise appears in periods without
speech. Therefore IMFs obtained by UPEMD are compared
to those obtained by the CEEMDand ICEEMDAN. The IMFs
are shown in Fig. 14(c) to (e), respectively.

There are some positive minima and negative maxima in
IMF 2 and 3 obtained by CEEMD, and in IMF2 obtained
by ICEEMDAN. This can be interpreted as the mode mixing
because the amplitude of the disturbance is too small, or the
mode splitting that an IMF consists of different copies of
scales as discussed in Sec. 3. We also observe waveform
distortion in IMF3 obtained by CEEMD, and in IMF 4,
5, and 6 obtained by UPEMD with np = 2, and in IMF
5 obtained byUPEMDwith np = 32. Obviously, the UPEMD
effectively suppressesmode splitting as compared to CEEMD
and ICEEMDAN that can be also examined the PMSI values
in Fig. 14(b).

The Hilbert spectrums of different methods are displayed
in Fig. 14(f) to (g). The violation of the IMF conditions may
lead to negative frequency and is not displayed in the figure.
In the time-frequency picture obtained by each EMD-based
algorithm, the residual noise effect makes the instantaneous
frequency fluctuate around the exact value, while the mode
splitting effect makes the two adjacent frequency components
move close to each other or even overlap. These two effects
then make the time-frequency picture looks blurry and the
blurriness (sharpness) of the picture can be used to compare
the performance of different EMD-based algorithms. As can
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FIGURE 14. Analysis of the speech signal in Example 7 using different disturbance-assisted EMDs with ε = 1 and ns = 10. (a) The signal, where
the period between t = 0.75 to 0.79 sec is marked in the rectangle; (b) the PMSI values using different EMD-based methods; (c) the IMFs
obtained by UPEMD with np = 32; (d) the IMFs obtained by CEEMD with ne = 200, (e) the IMFs obtained by ICEEMDAN with ne = 200. The points
with positive local minima or negative local maxima are marked in the circles. (f) the Hilbert spectrogram of the IMFs obtained by UPEMD;
(g) the Hilbert spectrogram of the IMFs obtained by CEEMD with np = 32; (h) the Hilbert spectrogram of the IMFs obtained by ICEEMDAN.

be seen that the Hilbert spectrums obtained by CEEMD and
ICEEMDAN are more blurred than that by UPEMD with
np = 32.

VII. CONCLUSIONS
The class of the disturbance-assisted EMDs including noise-
assisted and masking EMD can resolve the mode mixing

problem that is inherent in the standard EMD algorithm.
It is known that noise-assisted EMD may introduce two side
effects: mode splitting and residual noise. We further demon-
strate in this study that the masking EMD also suffers from
these two effects. In addition, we show that mode splitting
leads to an underestimation of the amplitude of the physical
components while residual noise contaminates the data and
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generates oscillatory components with distorted waveforms
(i.e., incorrect IMFs without true physical meanings). Mode
splitting is, on average, much more severe in the noise-
assisted EMD as compared to the masking EMD. The effect
of residual noise on the noise-assisted EMD results can be
reduced by increasing the number of realizations but at the
cost of much longer computational time.

To improve the EMD performance, we propose a new
disturbance-assisted EMD: UPEMD, in which a series of
assisted sinusoids with uniformly distributed phases are used
to resolve the serious residual noise problem. By considering
a signal with two oscillatory components, we show that the
level of residual noise is continuously reduced as the number
of sinusoids increases. The noise is substantially suppressed
when using 4 to 32 assisted sinusoids. Moreover, the mode
splitting effect is insensitive to the number of sinusoids. Note
that this method is a generalization of the masking EMD
introduced by Deering and Kaiser, in which positive and neg-
ative pairs of sinusoids are used as the assisted disturbance.

By further considering a generic case where data is decom-
posed into multiple IMFs, we propose the multi-level version
of the UPEMD. We tested UPEMD using numerical simula-
tions with stationary, nonstationary, nonlinear and real-world
data sets, and we found that the newmethod not only resolves
the mode mixing problem in the EMD, but also has sub-
stantially reduced mode-splitting effect in the noise-assisted
EMD.More importantly, the newmethodminimizes/removes
the unphysical residual noise in the masking EMD. Last but
not the least, UPEMD is a computationally efficient method
and can be readily utilized in a real-time manner in modern
microcontroller (MCU) to resolve many scientific and engi-
neering problems.
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